
OPEN SOURCE SECURITY &
THE MOBILE ENTERPRISE

© 2015 Black Duck Software, Inc. All Rights Reserved.

2

Employees no longer conduct business solely on corporate-issued computers
and mobile devices. They routinely bring their own productivity tools through
an organization’s front doors, including smart phones, tablets, and notebooks.
This shift in ownership from company- to employee-owned devices cuts costs,
but also brings new security risks.
The use of open source software on employee-
owned devices is ubiquitous, as it is across the
enterprise. And companies have good reason
to be concerned about open source security. A
key example lies in the Android platform, which
is built upon an open source code base. While
Android boasts its own defenses, these defenses
are easily bypassed with a few taps by users
intent on getting their jobs done (as opposed to
observing good security practices). Moreover,
Android is subject to range of severe security
threats, including the recently-disclosed and
easily-exploitable Stagefright vulnerability.

Poor or incomplete corporate policies for mobile
use, combined with vulnerabilities in the project
that comprises Android (along with other open
source software) can leave gaping holes in
enterprise and mobile application security. This
paper provides context for the current issues in
mobile enterprise and application security and

offers concrete tips for making organizations’
mobile platforms more secure.

THE ENTERPRISE MOBILITY THREAT
LANDSCAPE: AN OVERVIEW
Today, organizations face many challenges to
securing the disparate mix of devices with access
to corporate networks and data. Ever-increasing
use of both stand-alone mobile apps and those
that traverse the corporate firewall carries a
growing risk of exploitation. These apps, like
the enterprise infrastructure they touch, build
on hundreds of open source components with a
range of security profiles.

To understand the enterprise mobility threat
landscape, let’s consider the main areas of
concern: mobile platforms, mobile apps, the data
they access, and the APIs they use.

3

MOBILE PLATFORM SECURITY
The mobile platform landscape is chockablock
with open source software. The most visible
and pervasive open source mobile platform
is Android, which is itself an aggregation of
numerous open source components, starting
with the Linux kernel, and including the
Bionic C library, MySQLite, Binder, and the
application, display, telephony, and multimedia
frameworks that constitute the Android platform.
Not only does the platform itself rely heavily
on open source software, but so does much
popular Android middleware, along with the
development tools used to build both apps and
the platform itself.

Unfortunately, while Android is the most popular
and ubiquitous mobile platform with 78 percent
market share as of 2015, according to IDC,

it is also the smartphone and tablet operating
system most subject to security risks – especially
vulnerabilities in core components and malware
masquerading as valid apps. On one hand,
Android presents application developers with
both a “sandbox” that separates applications
from the platform, and “containers” that isolate
applications and data from one another. On the
other hand, Android also provides mechanisms
to bypass the sandbox (e.g., native apps)
and varying definitions of containers and the
accompanying configurations and permissions
that should govern application access to critical
resources. The most egregious result of these
weaknesses to date has been Stagefright, the
open source native Android audio-visual (AV)
player, in which a set of vulnerabilities exposes
this central component to exploit via the AV
media itself.

SHINING A SPOTLIGHT ON STAGEFRIGHT
Estimated to affect
some 950 million An-
droid-based phones and
tablets, the Stagefright
security flaws are
among the worst
Android vulnerabilities
discovered to date.

Since Stagefright is a native Android application
written in C++ (vs. the “Dalvik” Java dialect of
most Android apps), it lacks the protection afforded
by the normal runtime “sandbox” – running as
a native Linux app vs. a Java application within
a de-privileged virtual machine. These problems
are exacerbated by Stagefright being granted
“excessive privileges” for file access and execution
beyond what is actually necessary to play audio-
visual content.

The vulnerabilities in Stagefright date back to
Android version 2.2 and persist up to more recent,
widely-deployed versions. While patches are avail-
able, these vulnerabilities are likely to persist for
some time, due to:

•	 Highly variable practices by both device
manufacturers and operators in delivering up-
dates over-the-air (OTA) to devices in the field

•	 Huge version proliferation of Android soft-
ware components, and manufacturer and
channel-specific fragmentation of the Android
platform itself. Between device models and
versions, there can be hundreds of various
incompatible instances of Android deployed at
any one time; moreover, many Android-based
devices are never updated at all during their
fielded lifetimes.

4

But Android is not the only mobile platform that
integrates open source. iOS, while packaged
as proprietary commercial software, builds on
a range of open source projects, starting with
an underlying BSD/Darwin UNIX kernel, and
including application libraries (libc), utilities
(e.g., bash) and many tools and software
components needed to build applications.

Among other mobile platforms, there is
a predominance of proprietary code with
occasional outcroppings of open source, e.g.,
legacy SymbianOS (released as open source
software and called OpenSymbian), portions of
BlackBerry rebuilt around QNX (which runs many
open source packages and has an open-source-
like license), any phone running Java, and the
recent release of key portions of Microsoft .NET.

Organizations rolling out an enterprise mobility
program should at least be aware of the
vulnerabilities that crop up in their mobile
platforms and make a concerted effort to
keep devices up to date, even if they cannot
selectively patch and release mobile operating
system versions. Larger enterprise IT shops,
the integrators that serve them, and even
small- to medium-sized organizations, however,
are certainly in a position to benefit from
intelligence on distinct software components
(libraries, utilities, etc.) that directly impact
mobile applications they develop, deploy and/
or maintain themselves. But in today’s mobile
marketplace, users must go through device
manufacturers and wireless operators to
remediate threats via over-the-air (OTA) updates.

MOBILE APPLICATION SECURITY
With the introduction of Apple’s iPhone App
Store, the Google Play application marketplace,
and dozens of other app stores and exchanges,
the universe of mobile apps has expanded
explosively to encompass several million distinct

apps. This exciting but uncontrolled expansion
has been accompanied by a growing constellation
of security threats, including:

•	 Malicious apps snuck into poorly-curated
app stores that attack other apps, exfiltrate
user information and keystrokes, and
participate in botnets and DDoS attacks

•	 Vulnerabilities in infrastructure, principally
embedded browsers, libraries, and
middleware (including Stagefright),
used by marketplace apps and also by
enterprise-developed applications

•	 Weaknesses in architectural elements
intended to defend applications, including
authentication, execution sandboxes,
and containers

Consequently, enterprise IT organizations and
other end users need to defend their employees
and their networks against threats that
accompany downloaded mobile software. They
also need to be concerned about key aspects of
applications they themselves develop and deploy,
such as:

•	 Threats from malicious outside apps

•	 Exploits to client-side code that runs on
mobile devices

•	 Vulnerabilities in host-side code in corporate
data centers and the cloud, including both
enterprise applications and mobile device
management portals

Best practices for defending against downloaded
apps include black-listing known bad software
(and white-listing vetted apps), and running
untrusted apps in special containers or even
separate mobile virtual machines.

For in-house applications incorporating open
source software, organizations are best served
by implementing Open Source Hygiene – the
cross-referencing integrated versions of open
source components with databases of known
vulnerabilities (NVDB, OSVDB, VulnDB, et al.).

https://www.blackducksoftware.com/security/open-source-hygiene

DATA SECURITY: HOW IT RELATES
TO THE MOBILE ENTERPRISE
Discussions of security practices tend to treat
data as completely separate from the code that
accesses and manipulates it. Best practices
should include encrypting stored data and data
streams, such that even if software components
exhibit exploitable vulnerabilities and the
enterprise perimeter is compromised, corporate
data remains secure, right?

Well, not exactly. The context of the data in
question ultimately determines whether it’s
subject to threat, and also whether vulnerabilities
in code, including open source software, will
impact the security of that data.

Any discussion of data security must consider
three key contexts:

DATA-AT-REST: data stored on a rotating media
or flash memory, in a phone or tablet or on a
computer. Data-at-rest can be encrypted on
a per-file basis or stored in an encrypted file
system or volume. Naively, users often assume
that encrypted data-at-rest is by definition
secure, but it is actually subject to a range
of threats:

•	 Data encrypted with insufficiently strong
encryption or exfiltrated in a system breach
can be decrypted remotely using brute-force
decryption methods

•	 Data stored in temporary files, pre-
encryption or prior to deletion, can exist as
plaintext and is also vulnerable

•	 Weak authentication can lead to password
theft and subsequent access to encrypted
data-at-rest

•	 The varied software components that
access and manage data at rest – such
as encryption libraries, file systems, and
applications themselves – are subject to a
range of potential vulnerabilities, exposing
the data they secure and manage to exploits

DATA-IN-MOTION: data traversing wireless and
wired networks among mobile devices, data
centers, and other Internet locales. As with
data-at-rest, since encryption exists for data
transmission, end-users and IT professionals
often assume (erroneously) that data-in-
motion is inherently secure. While wireless
communications protocols support some level
of encryption (e.g., WPA), the end-to-end
transmission, even if otherwise encrypted, may
not be secure, or not encrypted at all. Related
issues include:

•	 Standard, presumed strong encryption
methods have exhibited numerous, severe
security vulnerabilities. In particular,
several dozen exploitable vulnerabilities
have surfaced in 2014 and 2015 in
OpenSSL, the industry-standard open
source implementation of SSL/TLS used
to protect browser-server connections and
other data exchanges. Most famously, these
vulnerabilities included Heartbleed, Poodle,
Freak, and CVE-2015-1793.

•	 Many vulnerabilities affecting data-in-
motion surface not in the code itself but in
the protocols they implement. One example
is “Logjam,” an exploitable vulnerability that
causes negotiation of SSL communications
sessions to fall back to 1990s-era weak
encryption implemented as a concession to
export restrictions then in effect.

•	 Unencrypted streams, or compromised
encrypted ones (as above) are subject
to a range of exploits, from wholesale
interception, to packet sniffing to steal
passwords and spoof authentication, and
man-in-the-middle attacks.

DATA IN USE: plaintext (unencrypted) data
residing in program variables, arrays, buffers,
and CPU registers in the context of application
and/or system software execution. Data-in-
use is secured by the isolation structure
offered by mobile platform, via Linux
processes, Android containers and/or full-
blown virtual machines. However, data-in-use
is vulnerable when applications and system
software are compromised through other

5

means – root kits, boot code exploits, and a range of
application-level exploits.

SECURITY OF APIS & MOBILE WEB
INTERFACES: WHAT YOU NEED TO KNOW
While enterprise mobility security focuses on mobile
devices themselves, it is equally imperative to
secure the channel by which corporate and third-
party apps communicate with back-end applications
running in corporate data centers and/or in the cloud.
Comparably, many mobile apps eschew specific
interfaces in favor of SSL/SSH-encrypted web sessions
running in browsers on mobile devices.

Designing, enabling, and supporting web APIs and/
or libraries to enable VPN connections requires a
rigorous command of what those interfaces expose on
the devices and on the web. Equally challenging is
securing browser-based applications from associated
threats – Javascript malware, strong encryption
by-passes (Heartbleed et al.), cross-site scripting
forgeries, buffer overflow exploits, and myriad
other risks.

As with other parts of the enterprise IT portfolio,
the software that implements web APIs and web
applications is built with open source, and/or heavily
dependent upon it. Given the high-profile, mission-
critical role of open source in enabling remote access,
it is imperative that organizations fully catalog the
open source components and versions in use on “both
ends of the wire” and engage in Open Source Hygiene
to discover vulnerabilities in those components and
prioritize remediation.

SECURITY STARTS WITH VISIBILITY –
KNOW YOUR CODE
Leveraging employee-owned devices to conduct
company business starts out as a win-win exercise,
but without good policy and practices, can result in
escalating security threats. Key is choosing solid,
well-maintained, and secure open source components
early in the mobile application lifecycle, and staying
ahead of emerging threats throughout development
and deployment.

Black Duck Software provides the tools and
capabilities to help organizations create and deploy
secure applications using open source, and to
mitigate emerging risks from vulnerabilities in code
that originates with open source communities.
The Black Duck Hub and the Black Duck® Suite
help security and development teams uncover and
mitigate open source related risks across application
portfolio by:

•	 Scanning and identifying open source software
throughout organization code bases

•	 Mapping known vulnerabilities in open source
organization code integrated and deployed in
enterprise applications

•	 Consolidating vulnerability information to aid in
prioritizing, scheduling, and tracking remediation

•	 Monitoring for newly disclosed vulnerabilities in
open source code

Want to learn more? Start securing your use of open
source software today with our free 14-day trial of the
Black Duck Hub.

WP-SEC_MBL_ENT-UL-0815

ABOUT BLACK DUCK SOFTWARE
Organizations worldwide use Black Duck Software’s industry-leading products to secure and manage open source software, eliminating the
pain related to security vulnerabilities, compliance, and operational risk. Black Duck is headquartered in Burlington, MA and has offices in
San Mateo, CA, London, Frankfurt, Hong Kong, Tokyo, Seoul, and Beijing. For more information visit www.blackducksoftware.com.

CONTACT
To learn more, please contact: sales@blackducksoftware.com or 1.781.891.5100
Additional information is available at: www.blackducksoftware.com

https://www.blackducksoftware.com/products/black-duck-hub
https://www.blackducksoftware.com/products/black-duck-suite
https://www.blackducksoftware.com/free-trial
https://www.blackducksoftware.com/free-trial
http://www.blackducksoftware.com
http://www.blackducksoftware.com

