
MMUs: Maximizing
Mission-critical
Utility

F E A T U R E

ByWilliam Weinberg

E
mploying hardward-
based memory man-
agement is one way of
enhancing the reliabil-
ity of applications in

the field. Although this technology is
often associated with large, multiuser
systems, even microcomputers in
embedded systems can benefit from
it, since as much as 50% of the sili-
con in popular embedded CPUs like
the PowerPC and Intel Pentium
families is dedicated to a memory
management unit (MMU). Too
often, this valuable resource is mis-

understood by developers and goes
unused in applications.

This article explains memory
management techniques, including
protection, virtual addressing, and
paging/swapping, and examines how
each applies to real applications, with
special emphasis on reliability and
performance benefits.

Protection

Despite popular images of lone pro-
grammers hacking away into the
night, most software projects of any
magnitude come from teams of soft-
ware engineers working together.
Larger applications, especially those

found in telecommunications and
data communications, often employ
hundreds of programmers generating
millions of lines of code. The
methodologies of modern software
engineering concentrate on the disci-
plines needed to manage such large
projects, but reality dictates that in
such large groups of engineers, com-
petence will vary greatly; moreover,
even the best programmer cannot
always produce bug-free code.

Nonprogrammers envision soft-
ware bugs involving program logic —
miscalculations, omitted program
steps, and erased key data — but the
bugs that make software engineers

High-availability, mission-critical applications in data
and telecommunications need to employ the most
robust and reliable software possible. Maintaining
software quality across applications with millions of
lines produced by hundreds of programmers is the
main challenge faced by software engineering.

MMUs: Maximizing
Mission-critical
Utility



lose sleep are those involving pro-
gram structure.

Modern software divides com-
puter memory up into regions, prin-
cipally for program code and several
types of data. Without an MMU,
these divisions are “soft,” enforced
only by the way that development
tools lay out memory and by how
programmers follow the layout disci-
pline. Large multiprocess or multi-
threaded programs further divide
these gross regions, giving each
process, task, or thread of execution
its own chunks of memory for code
and data. Among the hardest bugs to
find are those that violate this neat
structure — when programs uninten-
tionally modify their own code
regions, accidentally corrupt data
structures, or violate the code or data
regions of other threads, or even the
operating system kernel itself.

Hardware-based memory protec-
tion offers greater security and robust
application code to solitary or group
programmers by isolating the various
regions of a program and using the
integrated hardware MMUs on mod-
ern microprocessors. The MMU
erects “walls” around code and data
by defining memory segments for
each and restricting access to those
segments. Code segments are read-
only, disallowing accidental self-modi-
fication. Data segment access is

restricted to the current thread of exe-
cution or read-only data, and may be
protected in the same manner as
code. 

When a program attempts to
write over itself or violates data
access restrictions, an exception or
trap occurs, the executing program is
interrupted, and the offending pro-
gram location can be easily located
and repaired. In multiprocess sys-
tems, one errant thread will be
stopped from corrupting the entire
application, and may be restarted or
replaced without interrupting mis-
sion-critical operation.

Virtual addressing

Computer memory, while contiguous
and amorphous at the device level,
often gets laid out in computer sys-
tems on the basis of hardware
requirements such as vector tables,
memory-mapped I/O, and ROM/
RAM address boundaries. It is the
job of the operating system to make
this “lumpy” collection of resources
and address spaces appear “flat” and
accommodating to programs, so that
most software need not be cus-
tomized to run on a given computer,
thereby rendering it “portable.” 

The method by which an operat-
ing system can accomplish this level-
ing process is to give each program or
process in a system its own virtual
address space via the MMU. Then,
each process can behave as though
the entire computer memory space is
at its complete disposal. And with
memory protection (as above), the

process does not risk corrupting the
memory space of other processes in
the system. The operating system
maps or translates all program memo-
ry accesses, from the program’s
vision of memory (logical view) to
the available collection of system
memory resources (physical view)
through the MMU, in a manner com-
pletely transparent to the process
and its programmer. Combining vir-
tual address translation with seg-
mented memory protection yields
the following benefits:

• Simplified generic programming
models offer more straightforward
development and porting.

• Better allocation and use of system
resources can reduce system costs.

• Complete or selective isolation
among system processes simplifies
debugging, and when deployed,
enhances reliability.

How does it work?

Segment-based address translation is
quite straightforward: The processor
emits an address that must pass
through the MMU to arrive on the
system bus. The MMU “decodes” the
address and determines if it lies with-
in the bounds of a known logical
address segment. If it does, and if the
memory operation is allowed for the
logical address in question, then an
offset is calculated from the base of
the logical address block, and that
same offset is added to the base of the
physical address block per the transla-
tion in the MMU. If that address
exists in available physical memory,
then it is passed to the system bus and
the memory access cycle proceeds
apace. If not, or if the operation is not
permitted (e.g., writing into a read-
only space), then the MMU interrupts
the processor with an address excep-
tion. This entire process usually
occurs in one CPU cycle.

Paged memory manage-

ment and disk swapping

One of the first applications of mem-
ory management was to expand the
available memory address space in
the venerable mini-computer. In the
days before the advent of semicon-
ductor memory, main computer
memory was built out of tiny ferrous
rings (cores) strung together on grids
of wire; core memory was difficult to

Segment-based
address translation is
quite straightforward:
The processor emits
an address that must
pass through the
MMU to arrive on the
system bus.

Task 2

• • •

Kernel

Task 1

Task N


FIGURE 1: Errant task violating memory
divisions.



manufacture and expensive, so a sys-
tem with even 4 kbytes was consid-
ered “high end.” Even after the
introduction of semiconductor RAM,
memory pricing remained prohibi-
tively high and made memory size
the principal limit on application
development.

As is the rule in software devel-
opment, programs quickly grew to
fill available memory (and to exceed
it), and so a trade-off between
expensive core (and later RAM) and
less-expensive disk space emerged.
Programs can only run from on-line
RAM, so rotating media extended
available RAM space as follows:
Programs execute in the swap area.
When execution reaches the bound-
ary of this memory, the program
memory fetch “falls off the edge,” an
exception or trap occurs, and the OS
fetches the next block of executable
code from disk. When execution
jumps to code multiple blocks away
in address space, the OS must calcu-
late the RAM-to-disk mapping and
retrieve the appropriate disk block. 

The same basic procedure
applies when data space is extended
through swapping, but with the
added necessity of writing modified
blocks of data back to disk to ensure
integrity.

Paged/swapped memory manage-
ment use continues today; is present
in Unix servers and workstations,
Windows, Windows NT, OS/2, and
Macintosh desktop machines; and is
an available and desirable option in
real-time operating system (RTOS)
environments.

Even with the advent of cheap
computer memory and huge address
spaces, applications still grow to
exceed the available resources that
multimegabyte systems may need to
run applications with gigabyte code
and data requirements. Even in disk-
less systems, or systems with suffi-
cient RAM and ROM that do not
need swapping, the paged memory
paradigm proves useful.

The benefits of using paged
memory management are numerous:

• Reduced fragmentation of logical
program memory (although physi-
cal memory is randomly fragment-
ed, with no performance impact).

• Elimination of performance-inten-
sive “free-chain” memory allocation.

• Simplified extension of growing
memory regions (stack and heap)
through on-demand page allocation
prevents system crashes from
unforeseen memory requirements.

• Uniform, efficient use of memory
resources.

• Finer control over memory protec-
tion and memory sharing among
processes offers more flexible sys-
tem design, higher portability, and
better reliability.

Paged memory management is
also a key part of the Portable
Operating System Interface for UniX
(POSIX) process definition standard
for open systems.

How it works

Due to the higher resolution of
address translation, paged memory
management is somewhat more com-
plex than segmented models. As with
segmented translation schemes, the
MMU stands between the CPU and
system memory, and the result of the
logical-to-physical translation is com-
parable. For a 32-bit machine (e.g.,
the x86 in protected mode) with a 4k
(4,096 bytes) page size, translation
proceeds as follows (Figure 3): The
least significant 12 bits of the address
are taken as an offset into the page in
question (12 bits yield 212 addresses,
or 4,096 bytes). The remaining 20
bits are divided into two groups of 10
bits. The first 10 bits can address up
to 1k (1,024 bytes) translation tables,
while the second 10 bits address up
to 1k entries in each table. Since
each entry represents 4k of real
memory, this scheme handles a total
address space of 4 Gigabytes, where
each 4k page may be tagged as read-
write, read-only, swappable, or with
other salient characteristics. Small

modifications in such a scheme can
enable even larger addressable mem-
ory sizes.

Performance

considerations

Unfortunately, there is no such thing
as a truly free lunch. Using protec-
tion, virtual addressing, paging, and
swapping induces a finite perfor-
mance burden and carries some sys-
tem overhead:

•Address translation. The process of
address translation induces a small
delay in the transmission of memo-
ry address information onto the sys-
tem bus. This delay is never more
than one CPU clock cycle and
applies uniformly to all program
code and data accesses.

•Page table lookup. In paged memory-
management systems, the data
structures (page tables) that support
the address translation often do not
fit into the on-chip MMU itself and
end up in system memory. Memory
access time can then slow address
translation by multiples of system-
memory bus cycle time, potentially
degrading performance. All modern
MMU architectures, however, sup-
port a translation caching scheme
with “translation look-aside buffers”
(TLBs) that keep the most fre-
quently or most recently used map-
pings on-chip and, therefore, elimi-
nate translation delays.

•Context switch overhead. When the
operating system hands over con-
trol from one process to another, it
must reprogram the MMU to adjust
address translation to reflect the
virtual address map for the new
process. In a segmented MMU
architecture, this switch can involve
quite extensive manipulation of

OS

Swap Area

System Memory Hard Disk Drive

FIGURE 2: Swapping to disk.



MMU register sets and multiple
address calculations, increasing
context switch times (latencies)
and degrading real-time response.

If an RTOS thoroughly inte-
grates a paged-memory manage-
ment scheme (initializing the com-
plex of paged logical-to-physical
address mappings at start-up or
process load time), the impact on
context switching is truly minimal,
optimally involving the reloading of
a single register to point to a new
mapping structure, and the flushing
of the MMU TLBs.

•Swapping to disk. The only signifi-
cant performance impact in a mem-
ory-managed system comes from the
use of disk-based page swapping. If
a page of virtual memory is not pre-
sent in physical RAM, then the
operating system must fetch it from
disk storage, inducing potentially
long delays and reducing predictabil-
ity of system performance. This
effect can be minimized with the
use of a fast, deterministic real-time
file system and caching of the most
frequently and recently used pages.
It can be avoided entirely for key
sections of code and data by “lock-
ing” them into physical memory.

•Choosing hardware and software. Most
available CPUs used in communica-
tion applications today do offer inte-
grated MMUs, including PowerPC,
Intel 386/486 and Pentium, SPARC,
and high-end 68000 (030/040/060).
Highly integrated microcontrollers
with peripheral sets that appeal to
communication applications (like the
Motorola QUICC devices) formerly
evolved around 16-bit processor
cores without MMUs. Semicon-
ductor manufacturers, however, have

recognized the need for memory
management, and now offer the
same complement of powerful
devices built around 32-bit proces-
sors with integrated MMUs (like the
MPC860 or 386EX).

Not all embedded real-time soft-
ware, however, utilizes key MMU
hardware, and, therefore, denies
applications the benefits of memory
management. In fact, many embed-
ded RTOSes, kernels, and execu-
tives, ignore the presence of the
MMU entirely, presenting only a flat
memory model. This approach is
common with RTOS software that
covers a broad spectrum of target
CPUs (often over a dozen), and,
thus, supports the least common
denominator of functionality among
them. The 32-bit and 64-bit applica-
tions that you develop today with
such a system inherit the limitations
of decade-old hardware built into the
kernel. If you and your customers are
paying for the silicon that imple-
ments the MMU, shouldn’t its pres-
ence offer more than just added
power dissipation?

Memory management

checklist

If your application development in-
volves significant amounts of code,
large development teams, high avail-
ability, and real-time response, you
should ask the following questions
about the OS that will support the
design:

• Does the OS offer per process/task
memory protection? If not, what
recovery mechanisms exist for
crashes after deployment?

• Is the OS also fully preemptive? If
not, how can you prevent errant
processes from bringing down the
whole system?

• Is an available memory manage-
ment facility segmented or paged?
Is swapping available? 

• Is an offered memory protection
scheme deployable, or just present
as a debugging tool? Remember,
you deploy the kernel and your
application, not the tools.

• Does an available memory manage-
ment scheme significantly impact
system performance? If so, what are
the performance/reliability trade-
offs involved?

• Does the OS offer POSIX/Unix or
other open standards compliance,
both in terms of memory manage-
ment models and general program-
ming interface? If not, how is porta-
bility impacted?

More options

In the past, developers of embedded
systems had few options for deploy-
ing high-availability/mission-critical
applications. Code and team sizes
were smaller, tools and kernels were
almost always proprietary, and the
CPUs employed in designs offered
only small, flat address models.
Exhaustive testing (and sometimes a
wish and a prayer) produced accept-
ably reliable applications.

Today’s projects, involving huge,
international development teams
deploying gargantuan executables of
dozens of megabytes, combine
diverse systems units in an open-sys-
tems “buy, not build” environment.
This trend towards commercial off-
the-shelf components, combined
with microprocessors offering the
performance of yesterday’s super-
computers, confronts developers and
integrators with greater reliability
challenges. Memory management is
a key tool to bringing the many
pieces of a modern application
together, and ensuring that they
actually perform as one in the field.

William Weinberg is senior technologist for
Lynx Real-Time Systems, where he focuses on
embedded internetworking and real-time per-
formance issues. Weinberg is a graduate of the
University of California at Berkeley, and also
attended the Universities of Rome and
Pittsburgh for graduate studies. He can be
reached at william@lynx.com.

• • •

Page Table No. Page Table Entry Block Byte Offset

Page Table 0 Page Table N Page Table 1023

Page Number

Memory

Page

FIGURE 3: How paged memory management works.

Posted to LYNX REAL-TIME SOLUTIONS, INC web site with permission from COMMUNICATION SYSTEMS DESIGN, October 1997
©1997 MILLER FREEMAN, INC. All Rights Reserved. 


