
Executive Summary

The automotive environment presents device original
equipment manufacturers (OEMs) with a unique set of design
challenges centered on power and energy use and
management. Self-powered and with substantial battery
capacity, today’s vehicles occupy a midpoint between
stationary devices powered by constant AC power and fully
mobile devices such as 3G phones and media players. A
viable automotive Linux platform must accommodate this
hybrid position and support vehicle-centric and device-
specific requirements for both power state and energy
management subsystems.

This document examines the challenges presented by
supporting intelligent power state management for in-vehicle
systems, including designs for automotive infotainment,
telephony, navigation and maintenance, and available
technologies to meet those challenges.

Vehicle Power States and Device Energy Management

Standalone portable consumer electronics (CE) devices such
as mobile phones, media players, and digital cameras require
rich and robust energy management to draw the optimum
mix of performance and longevity from on-board batteries.

These types of devices can perform in a varied set of
operational states that impact energy availability and
management but typically only need observe a two-way
distinction between connected/charging and disconnected/
discharging power states. CE device designers typically make
no allowance for energy availability and management of
charging power sources, which can include AC and converted
DC, USB, automotive and airplane DC, and even solar
charging.

Table of Contents

Executive Summary... 1

Vehicle Power States and Device Energy
Management... 1

Key Linux/Open Source Software Technologies
for Automotive.. 2

	 CAN and MOST Drivers and Protocols........................... 2

	 D-Bus... 3

	 Energy Management... 3

	 Initng: Next-Generation Init System............................... 3

	 System Health Monitoring – Monit................................. 4

Conclusion... 4

Power State Management in Automotive Linux

Terminology

As automotive, consumer electronics, and embedded
software and hardware engineering intersect, technical
traditions and vocabulary for in-car systems design begin
to overlap. The following terms are defined for use in this
document.

Power state management: Automakers and their supply
chains use power management to describe the state of
vehicles and in-vehicle systems relative to their policies for
and use of electric power flowing from a vehicle’s
alternator and battery. To minimize confusion between
familiar automotive terms and current embedded and
mobile terms, in this document power state management
is used to describe the software infrastructure to support
vehicle power states and transitions.

Energy management: Silicon suppliers, device
manufacturers, and Linux kernel developers use a range
of terms to describe optimization of power and energy
utilization at the chipset and device levels. These
technologies and software techniques variously involve
scaling CPU clock speeds, adjusting device voltage levels,
and invoking, maintaining, and exiting from CPU sleep
modes, all to conserve power consumption and energy
usage over time. To avoid confusion with terminology used
in the automotive industry, in this document energy
management describes device-level power and energy
conservation efforts.

2 | Power State Management in Automotive Linux

Vehicle
Power State

Description Device Power
Source

Device Energy
Management

Ignition Off Vehicle powered off by key switch;
vehicle battery may be available but
use should be restricted to conserve
energy

Device battery Device-centric policies to conserve battery
(e.g., sleep)

Accessory
Mode

Accessories (radio, navigation system,
lighter, etc.) powered on by key switch;
policy and user sensibility determines
energy use

Vehicle battery Policies to conserve car battery (dim screen,
sleep, etc.)

Ignition On Engine on, alternator supplying DC
and charging vehicle battery

Vehicle generation Policies for best performance; vehicle system
powers device and charges device battery

Diagnostic
Mode

Vehicle in service bay, device
(optionally) used to display diagnostic
information

Vehicle battery or
external source

OEM/tier supplier specified

Primary power management states and energy management implications

By contrast, automotive Linux must account for the power
state of the system that supplies power to in-car devices, as
illustrated in the above table.

These primary power states form the basis for designing state
machines with the following event types driving state
transitions:

•	 Key switch transitions among Off, Accessory, On, and Start
positions

•	 Vehicle doors opening and closing and door locks
engaging

•	 Seat sensor and seatbelt closure switches showing
occupants present

•	 Events from wireless key fobs
•	 Remote input from satellite systems and services
•	 Vehicle security enabling and disabling systems in response

to user input and system challenges
•	 Special input to initiate diagnostic modes (“magic” key

chords and under-the-hood switches and connections)
•	 Other user input from dashboard and device-based

switches and touch screens

To support this kind of power state management paradigm,
an automotive Linux platform must integrate a mix of standard
and emerging Linux capabilities for CE and embedded
applications, functionality borrowed from desktop and
enterprise Linux, and facilities unique to automotive systems
design not yet mainstream in Linux.

Key Linux/Open Source Software Technologies
for Automotive

Fortunately, as an instance of an end-to-end OS, the use of
which spans from deeply embedded to desktop to server,
automotive Linux can leverage a wide range of existing code
and technologies.

CAN and MOST Drivers and Protocols

Automotive connectivity to dashboard-embedded devices is
complex, requiring support for determinism and interference
shielding. To serve the core requirements of automakers and
automotive device OEMs, automotive Linux must support
industry-standard interconnects and data transports that exist
in real-world vehicle systems. Such interfaces apply directly
to power state management as the transport for many of the
events that drive power state transitions. The two most
relevant are CAN (Controller Area Network) and MOST
(Media Oriented Systems Transport).

Several implementations of CAN exist as open source software.
The most prevalent and successful is SocketCAN, contributed
by Volkswagen and accepted into the Linux kernel mainline
version 2.6.25. For additional details on SocketCAN, visit the
project site at http://developer.berlios.de/projects/socketcan/.

To date, there have been no open source projects targeting
the relatively newer MOST interface. As such, automotive
Linux looks to proprietary implementations from commercial
software vendors. For example, in its automotive Linux
open source middleware layer, Wind River chose to inte-
grate the MOST stack provided by SMSC, a supplier of
semiconductor solutions for the automobile. Learn more
at http://www.smsc-ais.com/AIS/.

3 | Power State Management in Automotive Linux

D-Bus

Linux offers developers a rich toolbox of interprocess
communications (IPC) mechanisms. Given the need to inform
applications about power state transitions and to let
applications affect power state policy and drive transitions,
the most logical choice for automotive Linux is the Linux
Desktop Bus (D-Bus).

D-Bus is an open source software project that originated
with the FreeDesktop, an open source project working on
interoperability and shared technology for X Window System
desktops. Today D-Bus is the native IPC for the K-Desktop
Environment (KDE) and is increasingly prevalent on the
GNOME desktop as well (replacing Benobo). D-Bus is also
the preferred IPC for a range of mobile/embedded Linux
platforms including LiMO, Maemo/Hildon, Moblin, and
OLPC.

D-Bus lets applications register themselves and publish the
services they offer. D-Bus then gives subscribing applications
the ability to discover which services are available and to
respond to both application-created and system-level events.
In automotive Linux, D-Bus serves to deliver power state
transition events to relevant applications, including events
emanating from CAN and MOST bus messages. D-Bus events
can also be used to drive Linux run-level directly (see the
“Initng” section below).

Energy Management

In addition to uses ranging from deeply embedded to
desktop to server, Linux runs on CPU architectures as diverse
as ARM, Intel Architecture, MIPS, and PowerPC. This diversity
has led to the evolution of a range of CPU and device-based
energy management schemes. Some but not necessarily all
of the power management frameworks and energy
management technologies of the desktop and server
paradigm have been adopted in automotive Linux.

Developers and integrators of an automotive Linux platform
can use any of the following energy management paradigms
to meet the particular capabilities presented by the choice of
embedded CPU and the rest of the bill of materials:

•	 Advanced Configuration and Power Interface (ACPI): To
take advantage of notebooks, desktop computers, and
blades with BIOS support for energy management, Linux
kernel developers enabled support for the ACPI
specification developed by Hewlett-Packard, Intel,
Microsoft, Phoenix, and Toshiba. ACPI is primarily available
with PC motherboards, single board computers, and
blades built with Intel and AMD x86 architectures. ACPI
support is standard in the Linux kernel. See http://
www.lesswatts.org/projects/acpi/ for more information.

•	 Advanced Power Management (APM): The original Linux
energy management scheme, this targets notebooks and
desktop machines. APM has been retargeted to support
a range of CPUs and is employed on many embedded
applications. APM is also standard in the Linux kernel.

•	 Dynamic Power Management (DPM): To meet the needs
of global consumer electronics manufacturers, the IBM
Austin Research Lab, the Consumer Electronics Linux
Forum (CELF), and CELF members specified and
developed implementations of DPM. DPM features
extremely rapid transitions (1–10 milliseconds) among
power usage states and includes a scaling CPU clock,
voltage, and other attributes. DPM originally targeted
PowerPC and ARM-based devices but is otherwise
architecture-independent. Learn more at
http://dynamicpower.sourceforge.net/.

•	 Intelligent Energy Management (IEM): ARM Ltd., the
licensors of architecture and intellectual property
underlying ARM processors, offers its own IP cores for
energy management. The software designed to drive that
IP is IEM. Not all ARM-based silicon suppliers take IEM
from ARM Ltd.; in many cases licensees use their own
CPU-specific schemes instead, driving them with DPM
or APM. Learn more about IEM at http://www.arm.com/
products/esd/iem_home.html.

Initng: Next-Generation Init System

UNIX-type operating systems, including Linux, present
developers and users with a series of “run levels” that
accommodate varying modes of use. By default, Linux
executes in one of five levels: Single User (1), Networked
Single User (2), Text-Based Multi-User (3), X-Windowed
Multi-User (5), and Shutdown and Reboot (6). Desktop Linux
users will be familiar with running at level 5, and embedded
systems developers can and do deploy systems running at
levels 1, 2, 3, and 5. This level scheme, implemented by
sysvinit (originally from SVR4 UNIX), while suited to desktop
and server applications, does a poor job of representing the
power state management needed by automotive Linux and of
processing the needed agile transitions among states.

Initng has emerged as a strong alternative to sysvinit, not
just in embedded applications but in many enterprise
applications as well, and is being included in many desktop
and server Linux distributions. Initng offers developers a
range of useful capabilities:

•	 Parallelized service startup and concurrent execution
(based on dependencies)

•	 Reuse of sysvinit scripts
•	 Plug-ins to manage services (add commands, options),

react to signals, add states, etc.

•	 Service configuration with respawn options, depen-
dencies, nice, delays, environment, chdir, chroot, etc.;
available graphical application for configuring and
controlling run levels and services

•	 Automatic respawning of prematurely defunct daemons
•	 Available patches to respond to D-Bus events to change

run levels

To learn more about initng, visit http://www.initng.org.

System Health Monitoring – Monit

The scope of applications addressed by automotive Linux
today covers in-car communications and infotainment. These
are highly differentiating and key to a positive user
experience but not mission- or life-critical functions such as
engine control or antilock braking. Nonetheless, automotive
OEMs benefit from making these systems as reliable as
possible, in particular, with the monit project.

Monit is a utility for managing and monitoring processes and
resources on UNIX/Linux systems. As with initng, monit was
originally intended for data center applications but fits nicely
into automotive Linux. Applications can use monit to do the
following:

•	 Start or restart a process that terminates or fails to launch
(as part of power state transitions)

•	 Monitor files, directories, and file systems for changes in
timestamp, checksum, or file size

•	 Check TCP/IP port connections and monitor remote hosts

In practice, monit lets automotive OEMs and integrators do
the following:

•	 Maintain free RAM and persistent storage (disk, flash, etc.)
within predetermined ranges

•	 Instigate action to warn users and free memory as
user-managed content (e.g., music, videos) occupies
growing percentages of storage

•	 Implement policies for terminating processes in the face of
RAM and other resource shortages (instead of arbitrary
“reaping”)

•	 Run garbage collection in Java or custom run-time
platforms

•	 Log engine and system faults into infotainment system
storage and manage those logs

•	 Drive power state transitions based on available resources

You can learn more about monit at http://www.tildeslash.com/
monit/.

Conclusion

Power state management in automotive Linux is not a
monolithic capability. Supporting real-world requirements of
automakers and automotive OEMs entails leveraging and
carefully integrating a mix of open source and commercial
software components. As part of a comprehensive
automotive platform, power state management needs to
transport and respond to power state events from both
vehicle and application-internal sources, representing both
normal and exceptional operating states. With its synthesis of
enterprise and embedded features and flexible system
architecture, Linux provides an ideal platform to meet these
diverse requirements and enable a range of advanced
next-generation in-car systems.

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2008 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 06/2008

