
Executive Summary

The automotive environment presents device original 
equipment manufacturers (OEMs) with a unique set of design 
challenges centered on power and energy use and 
management. Self-powered and with substantial battery 
capacity, today’s vehicles occupy a midpoint between 
stationary devices powered by constant AC power and fully 
mobile devices such as 3G phones and media players. A 
viable automotive Linux platform must accommodate this 
hybrid position and support vehicle-centric and device-
specific requirements for both power state and energy 
management subsystems.

This document examines the challenges presented by 
supporting intelligent power state management for in-vehicle 
systems, including designs for automotive infotainment, 
telephony, navigation and maintenance, and available 
technologies to meet those challenges.

Vehicle Power States and Device Energy Management

Standalone portable consumer electronics (CE) devices such 
as mobile phones, media players, and digital cameras require 
rich and robust energy management to draw the optimum 
mix of performance and longevity from on-board batteries. 

These types of devices can perform in a varied set of 
operational states that impact energy availability and 
management but typically only need observe a two-way 
distinction between connected/charging and disconnected/
discharging power states. CE device designers typically make 
no allowance for energy availability and management of 
charging power sources, which can include AC and converted 
DC, USB, automotive and airplane DC, and even solar 
charging. 
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Power State Management in Automotive Linux

Terminology

As automotive, consumer electronics, and embedded 
software and hardware engineering intersect, technical 
traditions and vocabulary for in-car systems design begin 
to overlap. The following terms are defined for use in this 
document. 

Power state management: Automakers and their supply 
chains use power management to describe the state of 
vehicles and in-vehicle systems relative to their policies for 
and use of electric power flowing from a vehicle’s 
alternator and battery. To minimize confusion between 
familiar automotive terms and current embedded and 
mobile terms, in this document power state management 
is used to describe the software infrastructure to support 
vehicle power states and transitions.

Energy management: Silicon suppliers, device 
manufacturers, and Linux kernel developers use a range  
of terms to describe optimization of power and energy 
utilization at the chipset and device levels. These 
technologies and software techniques variously involve 
scaling CPU clock speeds, adjusting device voltage levels, 
and invoking, maintaining, and exiting from CPU sleep 
modes, all to conserve power consumption and energy 
usage over time. To avoid confusion with terminology used 
in the automotive industry, in this document energy 
management describes device-level power and energy 
conservation efforts.
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Vehicle 
Power State

Description Device Power 
Source

Device Energy  
Management

Ignition Off Vehicle powered off by key switch; 
vehicle battery may be available but 
use should be restricted to conserve 
energy

Device battery Device-centric policies to conserve battery 
(e.g., sleep)

Accessory 
Mode

Accessories (radio, navigation system, 
lighter, etc.) powered on by key switch; 
policy and user sensibility determines 
energy use

Vehicle battery Policies to conserve car battery (dim screen, 
sleep, etc.)

Ignition On Engine on, alternator supplying DC 
and charging vehicle battery

Vehicle generation Policies for best performance; vehicle system 
powers device and charges device battery

Diagnostic 
Mode

Vehicle in service bay, device 
(optionally) used to display diagnostic 
information

Vehicle battery or 
external source

OEM/tier supplier specified 

Primary power management states and energy management implications 

By contrast, automotive Linux must account for the power 
state of the system that supplies power to in-car devices, as 
illustrated in the above table.

These primary power states form the basis for designing state 
machines with the following event types driving state 
transitions:

•	 Key switch transitions among Off, Accessory, On, and Start 
positions

•	 Vehicle doors opening and closing and door locks 
engaging

•	 Seat sensor and seatbelt closure switches showing 
occupants present

•	 Events from wireless key fobs
•	 Remote input from satellite systems and services
•	 Vehicle security enabling and disabling systems in response 

to user input and system challenges
•	 Special input to initiate diagnostic modes (“magic” key 

chords and under-the-hood switches and connections)
•	 Other user input from dashboard and device-based 

switches and touch screens

To support this kind of power state management paradigm, 
an automotive Linux platform must integrate a mix of standard 
and emerging Linux capabilities for CE and embedded 
applications, functionality borrowed from desktop and 
enterprise Linux, and facilities unique to automotive systems 
design not yet mainstream in Linux.

Key Linux/Open Source Software Technologies  
for Automotive

Fortunately, as an instance of an end-to-end OS, the use of 
which spans from deeply embedded to desktop to server, 
automotive Linux can leverage a wide range of existing code 
and technologies.

CAN and MOST Drivers and Protocols

Automotive connectivity to dashboard-embedded devices is 
complex, requiring support for determinism and interference 
shielding. To serve the core requirements of automakers and 
automotive device OEMs, automotive Linux must support 
industry-standard interconnects and data transports that exist 
in real-world vehicle systems. Such interfaces apply directly  
to power state management as the transport for many of the 
events that drive power state transitions. The two most 
relevant are CAN (Controller Area Network) and MOST  
(Media Oriented Systems Transport). 

Several implementations of CAN exist as open source software. 
The most prevalent and successful is SocketCAN, contributed 
by Volkswagen and accepted into the Linux kernel mainline 
version 2.6.25. For additional details on SocketCAN, visit the 
project site at http://developer.berlios.de/projects/socketcan/.

To date, there have been no open source projects targeting 
the relatively newer MOST interface. As such, automotive 
Linux looks to proprietary implementations from commercial 
software vendors. For example, in its automotive Linux  
open source middleware layer, Wind River chose to inte- 
grate the MOST stack provided by SMSC, a supplier of 
semiconductor solutions for the automobile. Learn more  
at http://www.smsc-ais.com/AIS/. 
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D-Bus

Linux offers developers a rich toolbox of interprocess 
communications (IPC) mechanisms. Given the need to inform 
applications about power state transitions and to let 
applications affect power state policy and drive transitions, 
the most logical choice for automotive Linux is the Linux 
Desktop Bus (D-Bus).

D-Bus is an open source software project that originated  
with the FreeDesktop, an open source project working on 
interoperability and shared technology for X Window System 
desktops. Today D-Bus is the native IPC for the K-Desktop 
Environment (KDE) and is increasingly prevalent on the 
GNOME desktop as well (replacing Benobo). D-Bus is also 
the preferred IPC for a range of mobile/embedded Linux 
platforms including LiMO, Maemo/Hildon, Moblin, and 
OLPC. 

D-Bus lets applications register themselves and publish the 
services they offer. D-Bus then gives subscribing applications 
the ability to discover which services are available and to 
respond to both application-created and system-level events. 
In automotive Linux, D-Bus serves to deliver power state 
transition events to relevant applications, including events 
emanating from CAN and MOST bus messages. D-Bus events 
can also be used to drive Linux run-level directly (see the 
“Initng” section below).

Energy Management

In addition to uses ranging from deeply embedded to 
desktop to server, Linux runs on CPU architectures as diverse 
as ARM, Intel Architecture, MIPS, and PowerPC. This diversity 
has led to the evolution of a range of CPU and device-based 
energy management schemes. Some but not necessarily all 
of the power management frameworks and energy 
management technologies of the desktop and server 
paradigm have been adopted in automotive Linux.  

Developers and integrators of an automotive Linux platform 
can use any of the following energy management paradigms 
to meet the particular capabilities presented by the choice of 
embedded CPU and the rest of the bill of materials:

•	 Advanced Configuration and Power Interface (ACPI): To 
take advantage of notebooks, desktop computers, and 
blades with BIOS support for energy management, Linux 
kernel developers enabled support for the ACPI 
specification developed by Hewlett-Packard, Intel, 
Microsoft, Phoenix, and Toshiba. ACPI is primarily available 
with PC motherboards, single board computers, and 
blades built with Intel and AMD x86 architectures. ACPI 
support is standard in the Linux kernel. See http:// 
www.lesswatts.org/projects/acpi/ for more information. 

•	 Advanced Power Management (APM): The original Linux 
energy management scheme, this targets notebooks and 
desktop machines. APM has been retargeted to support 
a range of CPUs and is employed on many embedded 
applications. APM is also standard in the Linux kernel.

•	 Dynamic Power Management (DPM): To meet the needs 
of global consumer electronics manufacturers, the IBM 
Austin Research Lab, the Consumer Electronics Linux 
Forum (CELF), and CELF members specified and 
developed implementations of DPM. DPM features 
extremely rapid transitions (1–10 milliseconds) among 
power usage states and includes a scaling CPU clock, 
voltage, and other attributes. DPM originally targeted 
PowerPC and ARM-based devices but is otherwise 
architecture-independent. Learn more at 
http://dynamicpower.sourceforge.net/. 

•	 Intelligent Energy Management (IEM): ARM Ltd., the 
licensors of architecture and intellectual property 
underlying ARM processors, offers its own IP cores for 
energy management. The software designed to drive that 
IP is IEM. Not all ARM-based silicon suppliers take IEM 
from ARM Ltd.; in many cases licensees use their own 
CPU-specific schemes instead, driving them with DPM  
or APM. Learn more about IEM at http://www.arm.com/
products/esd/iem_home.html. 

Initng: Next-Generation Init System

UNIX-type operating systems, including Linux, present 
developers and users with a series of “run levels” that 
accommodate varying modes of use. By default, Linux 
executes in one of five levels: Single User (1), Networked 
Single User (2), Text-Based Multi-User (3), X-Windowed 
Multi-User (5), and Shutdown and Reboot (6). Desktop Linux 
users will be familiar with running at level 5, and embedded 
systems developers can and do deploy systems running at 
levels 1, 2, 3, and 5. This level scheme, implemented by 
sysvinit (originally from SVR4 UNIX), while suited to desktop 
and server applications, does a poor job of representing the 
power state management needed by automotive Linux and of 
processing the needed agile transitions among states.

Initng has emerged as a strong alternative to sysvinit, not 
just in embedded applications but in many enterprise 
applications as well, and is being included in many desktop 
and server Linux distributions. Initng offers developers a 
range of useful capabilities: 

•	 Parallelized service startup and concurrent execution 
(based on dependencies)

•	 Reuse of sysvinit scripts
•	 Plug-ins to manage services (add commands, options), 

react to signals, add states, etc. 
 



•	 Service configuration with respawn options, depen-
dencies, nice, delays, environment, chdir, chroot, etc.; 
available graphical application for configuring and 
controlling run levels and services

•	 Automatic respawning of prematurely defunct daemons
•	 Available patches to respond to D-Bus events to change 

run levels

To learn more about initng, visit http://www.initng.org. 

System Health Monitoring – Monit

The scope of applications addressed by automotive Linux 
today covers in-car communications and infotainment. These 
are highly differentiating and key to a positive user 
experience but not mission- or life-critical functions such as 
engine control or antilock braking. Nonetheless, automotive 
OEMs benefit from making these systems as reliable as 
possible, in particular, with the monit project.

Monit is a utility for managing and monitoring processes and 
resources on UNIX/Linux systems. As with initng, monit was 
originally intended for data center applications but fits nicely 
into automotive Linux. Applications can use monit to do the 
following:

•	 Start or restart a process that terminates or fails to launch 
(as part of power state transitions)

•	 Monitor files, directories, and file systems for changes in 
timestamp, checksum, or file size

•	 Check TCP/IP port connections and monitor remote hosts

In practice, monit lets automotive OEMs and integrators do 
the following: 

•	 Maintain free RAM and persistent storage (disk, flash, etc.) 
within predetermined ranges

•	 Instigate action to warn users and free memory as 
user-managed content (e.g., music, videos) occupies 
growing percentages of storage

•	 Implement policies for terminating processes in the face of 
RAM and other resource shortages (instead of arbitrary 
“reaping”)

•	 Run garbage collection in Java or custom run-time 
platforms

•	 Log engine and system faults into infotainment system 
storage and manage those logs

•	 Drive power state transitions based on available resources

You can learn more about monit at http://www.tildeslash.com/ 
monit/. 

Conclusion

Power state management in automotive Linux is not a 
monolithic capability. Supporting real-world requirements of 
automakers and automotive OEMs entails leveraging and 
carefully integrating a mix of open source and commercial 
software components. As part of a comprehensive 
automotive platform, power state management needs to 
transport and respond to power state events from both 
vehicle and application-internal sources, representing both 
normal and exceptional operating states. With its synthesis of 
enterprise and embedded features and flexible system 
architecture, Linux provides an ideal platform to meet these 
diverse requirements and enable a range of advanced 
next-generation in-car systems.
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